624 research outputs found

    Lipschitz normal embedding among superisolated singularities

    Full text link
    Any germ of a complex analytic space is equipped with two natural metrics: the outer metric induced by the hermitian metric of the ambient space and the inner metric, which is the associated riemannian metric on the germ. A complex analytic germ is said Lipschitz normally embedded (LNE) if its outer and inner metrics are bilipschitz equivalent. LNE seems to be fairly rare among surface singularities; the only known LNE surface germs outside the trivial case (straight cones) are the minimal singularities. In this paper, we show that a superisolated hypersurface singularity is LNE if and only if its projectivized tangent cone has only ordinary singularities. This provides an infinite family of LNE singularities which is radically different from the class of minimal singularities.Comment: 17 pages, 8 figures. Minor errors and misprints corrected. Comments are welcome

    Lipschitz geometry of complex surfaces: analytic invariants and equisingularity

    Full text link
    We prove that the outer Lipschitz geometry of a germ (X,0)(X,0) of a normal complex surface singularity determines a large amount of its analytic structure. In particular, it follows that any analytic family of normal surface singularities with constant Lipschitz geometry is Zariski equisingular. We also prove a strong converse for families of normal complex hypersurface singularities in C3\mathbb C^3: Zariski equisingularity implies Lipschitz triviality. So for such a family Lipschitz triviality, constant Lipschitz geometry and Zariski equisingularity are equivalent to each other.Comment: Added a new section 10 to correct a minor gap and simplify some argument

    Lipschitz geometry does not determine embedded topological type

    Full text link
    We investigate the relationships between the Lipschitz outer geometry and the embedded topological type of a hypersurface germ in (Cn,0)(\mathbb C^n,0). It is well known that the Lipschitz outer geometry of a complex plane curve germ determines and is determined by its embedded topological type. We prove that this does not remain true in higher dimensions. Namely, we give two normal hypersurface germs (X1,0)(X_1,0) and (X2,0)(X_2,0) in (C3,0)(\mathbb C^3,0) having the same outer Lipschitz geometry and different embedded topological types. Our pair consist of two superisolated singularities whose tangent cones form an Alexander-Zariski pair having only cusp-singularities. Our result is based on a description of the Lipschitz outer geometry of a superisolated singularity. We also prove that the Lipschitz inner geometry of a superisolated singularity is completely determined by its (non embedded) topological type, or equivalently by the combinatorial type of its tangent cone.Comment: A missing argument was added in the proof of Proposition 2.3 (final 4 paragraphs are new

    Minimal surface singularities are Lipschitz normally embedded

    Full text link
    Any germ of a complex analytic space is equipped with two natural metrics: the {\it outer metric} induced by the hermitian metric of the ambient space and the {\it inner metric}, which is the associated riemannian metric on the germ. We show that minimal surface singularities are Lipschitz normally embedded (LNE), i.e., the identity map is a bilipschitz homeomorphism between outer and inner metrics, and that they are the only rational surface singularities with this property.Comment: This paper is a major revision of the 2015 version. It now builds on the paper arXiv:1806.11240 by the same authors which gives a general characterization of Lipschitz normally embedded surface singularitie
    • …
    corecore